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Stimulated light scattering in smectic A liquid crystals 
by G. F. KVENTSEL" and B. I. LEMBRIKOV 

Department of Chemistry, Technion-Israel Institute of Technology, 
Haifa 32000. Israel 

(Received 5 July 1994; accepted 12 September 1994) 

The non-linear interaction of arbitrary polarized light with smectic layer deformations in smectic 
A liquids (SA) is considered. It is shown that the combined effect of anisotropy, fluidity and a 
characteristic kind of deformation cause a number of specific non-linear optical phenomena. 
Two-wave mixing in SA transforms into a partly degenerate four-wave mixing (FWM) when the 
polarization and the direction of propagation of the coupled electromagnetic (EM) waves are 
arbitrary. The interference of the EM waves gives rise to a dynamic grating of layer deformations 
without a change of mass density of SA. In the resonant case a propagating mode of a second 
sound (SS) is excited. The non-linear phenomena are analysed by solving the self-consistent 
system of the Maxwell equations for the non-linear anisotropic inhomogeneous medium and the 
hydrodynamic equations of SA in the external EM field. The explicit expressions of the EM and 
SS waves amplitudes are obtained. It is shown that the coupled fundamental EM waves undergo 
the parametric amplification and the phase cross-modulation, and their amplitudes as well as the 
SS wave amplitude are spatially localized. The energy transfer betwecn the coupled EM waves 
is non-reciprocal. The scattering of the fundamental EM waves by the dynamic grating results 
in the appearance of additional harmonics with combination frequencies and wavevectors. 
The light induced dynamic grating also generates a longitudinal electric field due to the 
flexoelectric effect. 

1. Introduction 
Stimulated light scattering (SLS) is a result of paramet- 

ric coupling of light and material excitation [ 11. In the past 
few years a new type of SLS in nematic liquid crystals 
(NLC) determined by the molecular reorientation in the 
field of electromagnetic (EM) waves has been investigated 
[2-71. It has been shown for the case of constant pumping 
intensity that the exponential amplification of one EM 
wave by another one was possible due to the so-called 
grating orientational non-linearity (ON) [2,4]. The two- 
wave mixing on the grating ON in NLCs results in the 
parametric non-reciprocal energy transfer when one EM 
wave is amplified by the other one, which is in turn 
attenuated 161. Since the change of NLC refractive index 
is proportional to the pumping intensity, NLC may be 
characterized as Kerr medium [S]. SLS in NLCs on grating 
ON was observed experimentally and the gain was 
measured [5]. It appeared to be of the magnitude of 
5 X lo3 cm MW - I ,  that is at least four orders greater than 
the gain in  the case of the ordinary stimulated Brillouin 
scattering in isotropic liquids [ 11. On the other hand, the 
level of EM wave intensity in SLS on grating ON is limited 
by the low energy of the orientational deformation. It is 
clear that for sufficiently strong EM waves the approach 
based on the purely orientational mechanism is invalid and 

* Author for correspondence. 

inapplicable. It should be noted that the orientational 
modes in NLCs are purely dissipative and overdamped 
[9, 101, and therefore a resonant excitation of grating ON 
in NLCs is impossible. 

Unlike NLCs, in smectic A liquid crystals (SA) a 
resonant propagating mode of the so-called second sound 
(SS) exists determined by the oscillations of the smectic 
order parameter [9-151. This phase is proportional to a 
smectic layer displacement u(r,  t )  along the Z axis normal 
to the layers [12, 141. SS propagates without the change of 
SA mass density and has the dispersion relation of the form 
[14,151 

where Q, k, are the S S  frequency and wavevector, 
respectively, B is the elastic constant corresponding to the 
layer compression, p is mass density. It is seen from 
equation (1) that SS exists only when k, is oblique to the 
layers [9-221. SS has been experimentally investigated by 
the spontaneous Rrillouin scattering [ 161, by ultrasonic 
methods [ 17-20], and by means of the Rayleigh scattering 
and the 'interdigital electrode technique' 121,221. The 
elastic constant B = 10' erg cm [ I2,2 1,221 has the 
intermediate magnitude between the value Xk2 in NLCs 
and an elastic constant T, corresponding to the bulk 
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22 G. F. Kventsel and B.  I. Lembrikov 

compression in organic liquids [lo,  12, 14-22]: 
,Kh2 B 4 T, where X is Frank constant [ 101. 

Therefore the optical non-linearity in Sa caused by SS 
grating would be stronger than an ordinary Brillouin 
non-linearity in  solids and isotropic liquids. It would also 
exist in the presence of strong EM waves in contrast to the 
grating ON in NLCs, although it is expected to be much 
less than the latter. Some cases of SLS in SA for the EM 
waves with particular polarizations and propagation 
directions were theoretically analysed by one of the 
authors [6,23,24]. It has been shown in [6] that the SLS 
of the ordinary EM waves propagated in the layer plane 
was in general analogous to the SLS on grating ON in 
NLCs 141. The parametric coupling of the extraordinary 
EM waves polarized in the incidence plane [2S] through 
the SS grating has been considered, and it has been shown 
that one wave would be amplified by the other one, which 
in turn would be depleted [23]. The strong incident 
extraordinary EM wave polarized in the plane of incidence 
excited a secondary EM wave and SS wave with the 
conservation of the frequency and the wavevector [24]. 
Recently, a speciat case of the resonant SS excitation by 
two EM waves polarized either in the incidence plane, or 
normal to it has been considered [26]. It has been shown 
that both the intensity of the coupled EM waves and SS 
amplitude have a spatially localized distribution. 

In this paper the general case of SLS in SA is considered 
when coupled EM waves have arbitrary polarizations and 
propagation directions and the combined effect of the 
anisotropy and layered structure is taken into account. 
It is shown that in this general case the two-wave mixing 
in SA transforms into the four-wave mixing (FWM) [ l ]  
because of the essential optical anisotropy of SA. Each EM 
wave splits into the extraordinary and ordinary ones with 
the same frequency and different wavevectors [25].  
We define such a process as a partly degenerate FWM, 
since there are four EM waves with two different 
frequencies. In the process of SLS the following chain of 
events 

( i )  

( i i )  

( i i i )  

takes place. 

The interfering EM waves create a dynamic 
grating of' layer deformations which consists of 
four propagating harmonics with the same 
frequency and the different wavevectors. 
The parametric amplification of the pair of the 
fundamental EM waves with the lower frequency 
by the other pair of EM waves with the higher 
frequency occurs. 
The fundamental EM waves are scattering on the 
light-induced grating and create small EM 
harmonics with combination frequencies and 
wavcvectors. The non-linearity also changes the 
polarization of the fundamental EM waves. It is 
also shown that light-induced dynamic grating of 

layer deformations gives rise to the longitudinal 
waves [27] with the SS frequency due to the 
flexoelectric effect [ 1 1 ,2  1,22,28-301. 

It is also shown that the fundamental EM waves 
amplitudes, SS waves, scattered harmonics and longitudi- 
nal electric field are spatially localized states. 

The paper is constructed as follows. The partly 
degenerate FWM is considered in the second part. 
Using the coupled-wave approach, the slowly varying 
amplitudes approximation and infinite plane wave 
approximation [ I ]  and assuming the process to be 
steady-state, we obtain the reduced equations for the 
slowly varying amplitudes of the fundamental EM waves 
and the wave equations for the secondary EM waves. In 
the third section the parametric amplification of the 
fundamental EM waves is analysed. The explicit expres- 
sions for the amplitudes of the fundamental EM waves and 
of the SS wave are obtained for the important case when 
one incident wave is mainly polarized normal to the 
incidence plane, while the other one mainly belongs to its 
incidence plane. The stability of the process is studied in 
the fourth section. It is shown that the fundamental 
solutions are stable. In the fifth section the Brillouin-like 
scattering is considered. The sixth section concerns the 
excitation of the longitudinal waves due to the 
flexoelectric effect. In the seventh section the rcsults are 
summarized. 

2. The partly degenerate FWM 
The analysis of the non-linear optical process is based 

on the self-consistent solution of the coupled equations of 
motion of the non-linear medium and of the Maxwell 
equations for the EM waves propagating in the non-linear 
medium [I] .  The terms responsible for the non-linear 
coupling are phenomenologically included into the dielec- 
tric constant tensor of the medium, while the terms 
determined by the external EM field are introduced into the 
equations of motion of the medium. Consider the 
homeotropically oriented SA [ 101 filling thc semi-space 
? > 0 .  while the semi-space , - < O  is filled with the 
homogeneous isotropic dielectric medium with the dielec- 
tric constant e, < c-, EI  . Neglecting a bulk compression the 
dielectric constant tensor t ; ih of SA with the first order in the 
layer deformations has the form 19,111 

and I 

The hydrodynamics of SA with layer displacement 
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Stimulated light scuttering in SALCS 23 

u( r, t )  as the dynamic variable is governed by the following 
system of equations [9,10,12-141 

The electric field El of the EM waves is determined by the 
wave equation [I], [25] 

1 d2DL 1 a2DN 
rotrotE+--= (1 1) c2 at2 c2 at2 ’ (3) 

where DL, DN are the linear and the non-linear parts of the 
electric induction, respectively; c i  is the non-linear part of 
the dielectric constant tensor (2) 

where 

a 
&a- j 

d X  

and 

(9) 

where v is the hydrodynamic velocity, a;= 1 Poise are 
Leslie viscosity coefficient [9,10], P is the pressure, g is 
the density of the generalized force, F is the free energy 
density, the term 

The non-linearity is weak for the pumping intensities 
applicable: 

since the layer deformations are small, as it will be shown 
below 

and may be omitted for k , # O  [lo,  111. Equation (7) 
expresses the continuity of the smectic layers; the slow 
process of permeation [lo, 121 is neglected at high 
frequencies [21,221. In the following the plane of the layer 
is chosen to be the XYplane, u(r, t )  is normal displacement 
of the layer, and therefore g = g,z. 

Applying rotrot operator to the equation (4) and 
substituting the relationship (2), ( 3 ) ,  (5)-(9) into (4) we 
obtain the equation of motion of SA 

SLS on SS in SA is assumed to be the steady-state process 
similar to the ordinary Brillouin scattering [ I ] ,  since the 
SS velocity is small in comparison with the light velocity 
c [lo, 12, 141, 

If2 

s =  (’1 - 104cmspl+c.  

Under such conditions E; may be represented as the sum 
of the finite number of the monochromatic harmonics with 
the time-independent amplitudes Ai(z )  slowly varying 
along the Z axis [ 1,3 11: 

E = e,AA,(z)expi(klr - wit) + f s  + c.c., ( 1  8) 
1 I 

where 
and 
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24 G. F. Kventsel and B. I. Lembrikov 

where ei, k,, (uj are the unit polarization vectors, wavevec- 
tors and frequencies of the fundamental coupled EM 
waves, respectively, f are the scattered harmonics 
governed by the non-linear electric induction ( 1  3), C.C. 

means complex conjugate. 
Let the two incident EM waves propagating in the 

semi-space z < 0 have the form 

1 1  E',.2 = el,2{Al.2expi(k\.2r - ~ o ~ , ~ t )  + c.c.) 

where (21) 
k\ ,2  = n:,2cr)l.z/c 

where ei,2 are supposed to be the three-dimensional 
vectors. Define the incidence plane of the wave El as the 
XZ plane. Such a choice is possible since SA possess the 
symmetry D, [lo]. 

I t  is known that in uniaxial medium as SA is the EM 
wave in general case splits due to the anisotropy into the 
two EM waves: extraordinary and ordinary ones with 
the following dispersion relations 125.321: 

where k ,  k" are the wavevectors of the extraordinary and 
of the ordinary waves, respectively. 

In our case four fundamental EM waves would 
propagate in SA: two ordinary EM waves and two 
extraordinary ones: 

EL:' = el'-'(Al','(,-)expi(k';"r - o l t )  -1 c.c.) 

E(?)." = e~.'{A;'.'(z)expi(k;''r - u r t )  + C.C.}.  

(24) 

(25) 

Each pair of EM waves (24) and (25) is frequency 
degenerate. Hence we may define the mixing of these 
waves on the non-linearity as the partly degenerate in 
contrast to the degenerate FWM or FWM with four 
different frequencies [ I ] .  

Using the relationships (22) and (23) and the boundary 
conditions at z = 0 [ I ,  2 5 , 3  1,321, we obtain 

(26) 

and 

k' - k" - k' - 0 kl ~ k0 ~ k' 
I, - l v -  I\. - > I I  1); 1 x 7  

Using the relationships (26)-(3 I )  we obtain the possible 
polarizations of the fundamental modes (24), (25) [25,32]: 

eY=(0,1,0), (32) 

e9 = ( e L  0, &), (33)  
2 - 1  e:: = - e:r(ki,kyJ[ (-) Wl i : I  - (k;)' - (k;J2]  , (34) 

C 

4 = <eY,, 4, 01, ( 3 5 )  

and 

It should be noted that both ordinary EM waves are 
transverse [25]: 

div E;,? = 0. (39) 

Substituting equations (24) and (25) into the equation of 
motion ( lo), neglecting the decaying homogeneous 
solution and retaining in the right-hand side only time- 
averaged terms with the difference frequency 

Am = L J J I  - w2 L O ,  (40) 

we obtain the layer displacement u(r, t )  
. 4  

2 
u(r, t )  = __ UJexp i(AkJr - Awt) + C.C. (41) 

4xp , = I 

where 

and 
GJ = (Atoj2 - Q,' + iAcor,. (43) 

The explicit form of the magnitudes included into the 
relationships (42), (43) is sufficiently complicate, and we 
pre\ent these expression\ in  the Appendix A. For optical 
frequencies m i , ?  and typical values of the material 
parameters a,, p,  B [9,10,21,22] rJ has a magnitude 
comparable with Q$ Substituting equation (41) into (14) 
we find 

I f  
47v,= I 

t:G = - ~ 2: L<,UJexpi(AkJr - Atut) + C.C. (44) 
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Stimulated light scattering in SALCS 25 

where 

It is seen from the relationship (41) that the dynamic 
grating of the layer displacement consists of the four 
frequency degenerate harmonics unlike the two-wave 
mixing [8], or degenerate FWM [ l ,  331. Substituting 
equations (24), (25) and (44) into (13) we obtain the 
non-linear part of the electric induction which represents 
the superposition of the finite number of harmonics 

32 

D = C. (D? exp i$l + c.c.). (46) 

Comparing the expressions (24), (25) and (41)-(46) one 
may see that the amplitudes DY are essentially complex. 
Therefore the amplification of some fundamental waves 
by the other ones through the non-linear terms (46) 
phase-matched with the fundamental modes (24), (25) is 
possible (see [4]). We do not present the explicit form of 
DY, since they are too complicated, however it is seen from 
the expressions (13)-(15), (24), (25), (41)-(46) that all DY 
are three-dimensional vectors and 

I =  i 

(47) 

whereA,,,,,kare the fundamental mode amplitudes A:;; (2). 

The sum (46) contains the two kinds of terms: (i) four 
harmonics which are phase-matched with the fundamental 
modes (24), (25), and ( i i )  all other terms with combination 
frequencies and wavevectors. 

Consequently, the non-linear polarization (46) gives 
rise to the three kinds of the essentially non-linear optical 
effects. ( i )  The parametric coupling of EY;; and am- 
plification are determined by the components of the 
phase-matched terms of the non-linear polarization (46) 
which are parallel to the field of the fundamental modes 
(24), (25). (ii) The normal to eY;$ components of the 
non-linear terms mentioned above generate the additional 
components of the fundamental modes. As a result, all 
fundamental modes become the three-dimensional vec- 
tors, while originally E;, E; were the two-dimensional 
vectors. ( i i i )  The non-linear terms in (46) with combi- 
nation frequencies and wavevectors create the scattered 
harmonics (Brillouin-like scattering). 

Substituting equations (12), (18), (24), (25), (46) into 
the wave equation (1 l ) ,  taking into account the dispersion 
relations (22) and (23), conditions (19), (20) and equating 
the terms with the same phases we obtain three sets of 
equations describing the effects mentioned above. 
(i) The reduced equations for the slowly varying ampli- 

tudesA?;;(z). We do not limit the analysis of the parametric 
coupling to the constant pumping intensity approximation 
[ 11, often used [3,4,7] and consider the general case taking 
into account the depletion of pumping waves and the 
saturation of amplification. ( i i )  The wave equations for the 
additional components. The extraordinary wave E', fails to 
satisfy the condition (39) and propagates in the main 
cross-section [25] according to equation (26) in such a way 
that 

aD,(k;, ~ l ) l d y  0. 

The additional components of the ordinary waves EY,2 are 
not longitudinal because of the anisotropy of SA. Therefore 
it is more convenient to derive all these additional 
components directly from the corresponding wave 
equations instead of using the equation 

divD = 0 (48) 

along with the relationships (12), (13), (39) according to 
the known procedure [l]. (iii) The wave equations for the 
Brillouin-like scattered harmonics. The non-linear analy- 
sis presented in this paper is based on the assumption that 
the non-linearity is weak. The criterion of smallness of the 
non-linearity may be obtained combining the relationships 
(17), (41)-(43) and (A 1)-(A 6). It has the form 

This inequality is valid for any applicable pumping 
intensity taking into account the magnitude of B 
[ 12,21,22]. 

3. The parametric amplification of the coupled 
fundamental EM waves 

Separating the equations for the fundamental 
modes ET;, multiplying each equation by the corre- 
sponding polarization vector eye, 2 (32), (33), ( 3 3 ,  (37), 
defining 

A:;; = IAp;zl expi$:; (50) 

and taking into account the relationship (43) we obtain the 
reduced equations for the amplitude moduli IAY:il and the 
phases yy: ;: 
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26 G. F. Kventsel and B. I. Lembrikov 

where 

The equations ( 5  1)-(54) describe the parametric energy 
transfer between the pairs of the EM waves with the 
different frequencies and the phase cross-modulation [4]. 
The solution of these equations with the appropriate 
boundary conditions at z = 0 and i + provides a full 
description of the spatial distribution of the amplitude 
moduli and phases of the four fundamental EM waves in 
S.4. The nonlinear susceptibility is complex as it is seen 
from equations (41)-(44), and the energy transfer is 
determined by the imaginary part of the Fourier transform 
of SS Green function G,(Aw,Akj) according to the 
equations (43), (5  1 )  and (52).  The energy transfer between 
the ordinary and extraordinary EM waves with the same 
frequency is impossible. The light absorption by the 
dynamic grating of layer deformations may be neglected, 
since the SS eigenmode relaxation time r,- determined 
by the viscosity of SA is small in comparison with the time 
required for SS transition through the EM waves interac- 
tion region. In such an approximation the coupled system 
of the EM waves and of the dynamic grating may be 
characterized as quasi-dissipative. The dynamic grating 
(41) turns out to be a sort of a channel providing a total 
energy transfer without losses between the coupled EM 
modes. This system possesses only one integral of motion 
which may be easily obtained from the equations (51) and 

(52).  It has the form 

Introducing the dimensionless variables 

and substituting them into equation (56) we obtain 

w:+w,;+w;+w;= 1. ( 5 8 )  

Substituting equation (57) into the equations ( 5  1)-(54) we 
obtain 

and 

where the coupling constants fi,, 6, have the form 

/lJ = C,AcoT,, 6,  = CI[(Ac~)' - Q;l, 

and 
di 1 lyl;, d2 = Itl;,  dj = lyl;, d4 = lyl;. (63) 

The calculations of the explicit solutions of the system 
(59)-(62) in our general case is hardly possible, and we 
investigate the qualitative behaviour of the intensities wi:.; 

and of the phases yy:;. Without the loss of generality we 
choose cr)] > w2. 

Then according to equations (63) 

/I, > 0 (64) 

and therefore the expressions in the right-hand sides of 
relations (SO) and (60) are positive definite. Hence 

and it is seen that the intensities of the fundamental EM 
waves Eye are monotonically decreasing, while the 
intensities of the EM waves EZ.' with the lower frequency 
co2 are monotonically increasing with i .  According to the 
conservation law ( 5 8 )  all amplitudes wy;; are finite at 
:+ =. 
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Stimulated light 

The system (59)-(62) has the formal solution in the 

wYC= wY'(O)exp{ - ( ; ( ~ 3 , ~ w ~ r + ~ 4 , , w ~ o ) d z ] ,  0 (66) 

w?' = w?"(0) exp [ (j?3,2wYr + j?1.4~7')&], (67) 

integral form 

0 

- $'"(O) = 6 - +(b3,2W?' + 6,lW;")dz (68) 

and 

'#" - $'"(o) = 1 - + ( 8 3 , ~ W : ' ~  -k S I , ~ W ~ " ) & .  (69) 

Taking into account equations (58) and (65) we obtain 
from equations (66) and (67) 

z+ =, W;'"+O, w;+w;+1. (70) 

The relationships (65) and (70) show that the energy 
transfer from the pair of EM waves with the greater 
frequency 01 to the pair of EM waves with the lower 
frequency w2 occurs. This process is non-reciprocal, since 
the medium is quasi-dissipative. 

In the constant pumping intensity approximation [ 11, 
wy" are supposed to be constant, and wY" % w:". 

In this case the integrands in the expression (67) are 
constant, and ETe would increase infinitely with the gain 
coefficient determined by the imaginary part of the 
non-linear susceptibility [24]. In other words, in 
the constant pumping intensity approximation the terms 
responsible for the amplification are constant and rep- 
resent the field-induced complex spatial dispersion 
[25,34]. In general case when the pumping depletion is 
taken into account we pass from the linearized theory to 
the essentially non-linear one, and the mentioned terms 
become dependent on coordinates. Therefore the 
terms responsible for the dispersion and for the non- 
linearity are identical, and the process of the parametric 
amplification would be stable giving rise to spatially 
localized states without any threshold [35,36,34]. 

The influence of the phase cross-modulation on the 
parametric process is determined by the ratio of 
the coupling constants p, and S,. According to the 
condition (64) for wl > w2 j?] are positive definite while 6, 
may be positive as well as negative. Four essentially 
different cases of the interplay of the phase cross- 
modulation and the parametric amplification may occur. 

( i )  Aw S 0, 

Then 

8, > 0, P,/S, = TJAw 4 1 

and the phase cross-modulation process dominates. The 
phase-shifts are negative which corresponds to the 

scattering in SALCS 

defocusing condition 
distance is weak. 

( i i )  Aw 9 Qj 

27 

[l]. The amplification at the same 

In this case the phase cross-modulation prevails, too, but 
the phase-shifts (68) and (69) are positive which 
corresponds to the focusing condition. 

(iii) AQ - ( S / C ) W ~  -- Qj,  

[(Aw2) - Q~] / (Ao)~  4 1 .  

j = ( 1 A), 

In this case P j S  IS,/, j =  (1-4). The process of the 
parametric amplification is predominant while the 
phase-shifts would be comparatively small. 

(iv) The exact resonance of the one of the SS harmonics 
uj: ( A w ) ~  = Q;. 

Let, for example, the resonant coupling occurs between 
the wave Et and the wave EZ. The resonant condition in 
this case has the form 

Substituting the dispersion relations (22) and (23) into the 
equation (71) and using the relationships (26) and 
(28)-(30) we obtain 

+ [ (1 - y)'" 

where the small terms of higher orders O(Aw/oI) are 
neglected. It is clear that the equation (7 1) may be satisfied 
only for Aoiw1 - sic. The relationship (72) represents in 
the implicit form the limitations on the propagation 
directions of the coupled EM waves which is specific for 
the SS excitation. Comparing the expressions (43) and 
(63) it is seen that the resonant coupling constant j3; S pj 
( j  f I )  while 6; = 0. 

The phase shifts for the resonantly coupled waves are 
much less than for other pairs. 

The interaction of the non-resonant pairs of waves may 
be considered as perturbation. It is clear that the third and 
the fourth cases are the most favourable for the strong 
coupling since the energy transfer occurs at the almost 
constant phases. 

The behaviour of the grating harmonics amplitudes (42) 
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28 G.  F. Kventsel and B. 1. Lembrikov 

is determined by the field-dependent factors Mj. Substitut- 
ing equations (57), (66) and (67) into (A6) we obtain 

where 

ml = w;l(O)w;(O), m2 = w;(O)w;(O), 1113 = w;(O)w:(O), 

m4 = w:(o)w;(o), (74) 

II = p3wp + plw; - p2w; - plw; 

I 2  = p2w: + p4wp - p2w; - plw; 

I3 = p3w: + plw; - p3w; - p4w9 

14 = p2w: + p4w;) - p3w; - p4w; 

(75) 

Comparing the relationships (57), ( 5 8 ) ,  (70) and (73)-(75) 
we see that at z = 0 the dynamic grating is determined by 
the input intensity of the coupled fundamental EM waves 
while at z+ 30 all harmonics (41) vanish since z-+ m ,  

lMjl -0. The condition of maximum for each grating 
harmonic amplitude has the form 

and I 

The solution of relations (76) exists, if at least f,(O) > 0. 
The latter condition may be satisfied for all harmonics, if 

W?'(O) > W20.e(0). (77) 

Therefore the amplitudes of the layer displacement grating 
are spatially localized, and four harmonics (41) are 
travelling along the directions Ak, obliquely to the layers 
which is characteristic for SS in SA. 

Consider the practically important case when each of 
the incident EM waves has mainly one kind of polarization 
and only their small components have the other polariza- 
tion. Let, for example, the pumping wave E: is polarized 
mainly in the incidence plane while the signal wave Ek is 
mainly polarized normal to its incidence plane: 

w; 2%. w:, w; 4 w;. (78) 

In this case the system (59)--(60) splits into the following 
equations: 

aw; aw; 
az 8 Z  
~- - -p,w:w;, -- - ptw;lw;, (79 a )  

The first two equations (79 a )  describe the two-wave 
mixing [8] and may be solved separately. These two 
equations have an integral of motion 

(80) Jl = WY(0) + WZ(0) 

w'e I - - ~ J ~ { I - t a n h ( y - v o ) }  1 

w i  = ( 1 + tanh ( q  - q o ) }  

u] = $tJlz, zo = - In {wXO)/wXV). 

and the solution 

(81 a )  

(81 b) 
and 

where 
1 

BiJi 
The intensities w; and w; have a form of a spatial kink and 
an anti-kink [35, 361, respectively. Their crossing-point 
zo > 0 exists, if 

w:(o)/w;(o) > 1 (82) 

The solutions (8 1) for the different pumping-signal ratios 
(82) are represented in figure 1. 

Substituting (81) into the pair of equations (79 b) we 
obtain the expressions for the small components 

wy = wy(O){ cosh (q0)exp ( - q)/cosh ( q  - q ~ ) } ~ ~ / ~ ~  (83) 

and 

w; = w;(O){ cosh (qo)exp(q)/cosh(q - v o ) ) p 2 / / ' I  (84) 

It is seen from the relationships (83) and (84) that the 
ordinary component of the pumping wave vanishes as q 
tends to infinity, while the extraordinary component of 
the signal wave, on the contrary, increases and reaches the 
saturation at sufficiently large q S qo: 

and 

q + 30,  

q + oz 3 w: -+ 0, (w%lax = WY(0) 

w; + w;(o){ 1 + w;(o)/w;(o))fi2/~~ > w ; (q) .  (86) 

(85 )  

I 2 3 4 5 

77 
Figure 1. The dependence of the reduced pumping intensity 

(w:/J])  and the reduced signal intensity (wS/Jl) on the 
dimensionless coordinate for the pumping-signal ratio 
(w;(O)/wg(O)) = 1.5 (curves 1,2), (w;(O)/wq(O)) = 5 (curves 
3,4), (w~(O)/wi(O)) = 10 (curves 5,6) .  
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Stimulated light scattering in SALCS 29 

8 

(b )  

Figure 2. The dependence of the reduced intensity (wy/wy(O)) 
of the ordinary pumping wave on the dimensionless 
coordinate q and on 0 s b2 6 I :  (a)  qo = 0.2 ((w?(O)/ 
w;(O)) = I .5) ,  (b) qo = 1 ((w?(O)/w;(O)) = e2). 

The numerical estimations show that both saturation and 
pumping depletion occur at q - (4-5). Comparing the 
expressions (63), (83) and (84), we may see that far from 
the resonance when all pj are approximately equal both 
components (83), (84) are changing with an approximately 
same rate. In the opposite case, near the resonance 
f12,34pI, and the small components are kept almost 
constant since they are weakly coupled with the main 
waves. The function (83) and (84) with the different values 
of the exponents b1.2 = p2,dfil are presented in figures 2 
and 3, respectively. 

Consider finally the behaviour of the phases. In general 
case the phase evolution of each wave is rather complicate. 
Each phase evolves independently from other ones 
because the cubic susceptibility is complex. We investi- 
gate two limit cases: first, when the coupling is far from 
the resonance, and secondly, the resonant coupling. 
Substituting the relationships (81), (83) and (84) into the 

equations (68) and (69) and assuming that far from 
the resonance bl, 2 = 82 ,3 / f?1=  1, we obtain that the phases 
y?" of the pumping waves Eye rapidly increase with 
tending to 2 00 for (Am)* < or (Aw)~<Q:,~,  
respectively: 

That means that the depletion of the pumping waves 
is accompanied by the oscillations of the correspond- 
ing amplitudes (50). The phases y?' of the signal 
waves E> reach the constant values at sufficiently large 
q +  qo: 

In ( 1  + wi(O)/w;(O)]. (88) 8 1 , 2  

2Pl 
-- 

1.0" 
u .u 

(b)  
Figure 3 .  The dependence of the reduced intensity (w;Iw;(O)) 

of the extraordinary signal wave on the dimensionless 
coordinate q and on 0 ~ 6 ,  S 1: (a) qo = 0.2 ((wy(O)/ 
w;(O)) = 1.5), (b)  qo = I ((w;(O)/wq(O)) = e2). 
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30 G.  F. Kventsel and B. I. Lembrikov 

2 4 6 8 

77 
Figure 4. The distribution of the reduced phases: curve 

1 ~ (2~1/hl,3)17pc - 7';."(0)], curve 2 - (2/3'1/61,2) 
[4., ~ 3 " ( 0 ) ] .  
i ?  

The evolution of the phases (87) and (88) is shown in the 
figure 4. 

The medium behaves as focusing or as defocusing one 
in respect to the amplified waves depending on the sign of 
~ 5 1 . 2 .  The case when 

(Aw)' < Q:, 

and both phase shifts (88) are positive is the most 
favourable since the signal waves are at the same time 
parametrically amplified and focused. 

In the resonant case the main terms in the phases of the 
fundamental coupled waves Er and E; vanish, since 
ST = 0. Near the resonance we may also suppose the 
integrands in (68) and (69) to be constant: wp = wp(O), 
w$ = w;(0). The phases of the waves Er and E; have, 
consequently, the form which is analogous to a phase shift 
of a plane wave: 

62 a 3  

2 2 7 ;  - f(0) = - - w;(O)z, 7 ;  - yY(0) = - - W$yO)Z. (89) 

The phase shifts on the interaction interval 2.7-0 are small: 

The resonant energy transfer occurs at the almost constant 
phases. 

The results obtained permit to calculate explicitly the 
layer displacement u(r, t ) .  Combining the relationship 
(A 6), (57) ,  (81 a, b) and (84) we find the amplitude factors 
of the dynamic grating 

X { cosh (qo)  } exp ( I - b2) {i 1 
X { sech ( q  - q o ) }  ' I2('  +''Z), 

I and 
IM41 = Mo { ~ ; ( 0 ) ~ ; ( 0 ) }  ' I2 {  cash (yo)} '""l +"'' * 

X exp { :y(b2 - bl)} { sech ( ~ 7  ~ yo)} 

where Mu = I o o l ~ 2 / c 2  and y -+ m ,  IM,l+ 0. 
It is seen from the latter expressions that the profile 112.11 1 

of the harmonic excited by the EM waves with the 
strongest coupling has a spatially localized distribution 
with the centre at q = qo. All other profiles have displaced 
distribution in respect to yo. The smallest amplitude 1M41 

may decay rapidly or slowly which depends on the sign of 
the difference (p i  - r ( j 2 ) .  The first case corresponds to 
/ ) ) 3 < r ( j 2 ,  while the second case occurs when oi>p2. 

The profiles lMjl are shown in figures 5 and 6. 
Let us evaluate numerically the coupling constant B', in 

the resonant case which plays the role of the gain 
coefficient for the EM wave E; according to (8 1 b). Taking 
into account the relations (26)-(31), (43), (55) .  (56),  (63), 
(A l), (A2), (A7) and (AS) we obtain the gain per unit 
intensity 

PI e, Akl l  ? -- 
.d cd(,,,kscos 4; ( *x) 

where 4; is the angle between k; and the Z axis, and the 
pumping intensity 9' has the form C251 .'P = IAT/'c/4n. 

It is seen that in the resonant case the gain coefficient 
does not depend on the EM wave frequency and strongly 
depends on the propagation directions of the amplified EM 
wave E; and SS wave. The strongest amplification occurs 
when both EY and the SS wave propagate at small angles 
with the plane of smectic layer. Using typical valucs 
of thc material parameters x, = I Poise [ 10,2 1,221. 
s - 10'cm s ~ [ I2,2 I ,  221, E ,  = 0.6, c1 - 2 171, we obtain 
that for different t/$ and the SS wave propagation 
directions 

Pi 
- - (0.01-10) cm MW I. 
;/p 

This value of /$/.Y is up to three orders of magnitude 
greater than a gain coefficient for the ordinary stimulated 
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I .o 

0.4 
MI0 

0.2 

0.2 1 

2 4 6 8 

1 1 
2.0L I A 

5 10 15 2 0  
rl 

( C )  

Figure 5.  The dependence of the reduced moduli (lMil/Mtn) 
and (IM~I/M~o) of the dynamic grating amplitudes on the 
dimensionless coordinate q for the pumping-signal ratio: 
(w?(O)/w;(O)) = 1.5 (curve I ) ,  (w;(O)/w$(O)) = 5 (curve 2) .  
(w;(O)lw;(O)) = 10 (curve 3): (a) (IMII/MIo), (b)  ((M~~/M~cI) 
with rapid decay, (c) (1hf41/M40) with slow decay. 

Brillouin scattering in isotropic organic liquids [ 13. For the 
high input intensity 9- 100MWcm-2 we obtain the 
gain coefficient B‘; - (l-103)cm-’, and the length of 
the interaction interval L would be L-216 - 
( 2 ~  10-~-2)cm.  

This estimation is in agreement with the experimental 
results [37]. 

4. Analysis of the stability 

we expand the intensities (57) into a series: 
For the analysis of the stability of the solutions (81 a, b) 

w;=w;o+w;,+ ..., lw;lpwfo (91 a) 
and 

w;=w;,+w;,+ ..., Iw;,I-eW;o (91 b) 

Substituting the expansions (91 a, b)  into the system of 
equations (59) and (60) and taking into account the 
relationships (78) and (79 a,  b) we obtain 

Blcw;ow;I + w;ow;,> + B2WSWelch (92) 
dw;l- 
az 
-- 

and 
wyl + w;’ + wy + w; = J2  = const. (94) 

where 5’ is an integral of motion of the system of equations 
(79 b), (92) and (93), and the expressions (8 1 a,  b) are used 
as the first approximation solutions wTo, w&. Using the 
conservation law (94) and the expression (81 a, b)  we 
obtain the general solution of the equations (92) and (93). 
It has the form [38] 

w ; ~  = Cl{cosh(qo)sech(v - qo)}’ 

+ {sech(q - rl0>I2 dq’{cosh(q’ - v0>I2 id’ 
and 

wil = C2{ cosh (qo) sech ( q  - q ~ ) } ~  

+ {sech(v - yo)]’ 

X { 1 + tanh (q’ - qo) ) { J 2  - w5 - wy( 1 - b2) ) .  (96) 

The equations (79 b), (92) and (93) describe the influence 
of the small components wy and w; on the main 
components wy and wz, and it is clear that at the boundary 
of the non-linear medium z = 0 the small corrections w;,  
and w;l do not exist: 

dq’(cosh(q’ - qo))*  6 

wfl(0) = WZ,(O) = 0. (97) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



32 G. F. Kventsel and B. I .  Lembrikov 

As a result we find that 

CI = c 2  = 0, 

w; ,  = (sech(q - ~ 0 ) ) ~  1; dqf{cosh(q' - q ~ ) } ~  

(98) 

X [ 1 - tanh (v' - q ~ ) }  

x ( w : + w ; ( l - b , ) - J z } ,  (99 a )  

rl 
(d  ) 

Figure 6. The dependence of the reduced moduli (IM21/M2") 
(6a ,h )  and (IM31/M30) ( 6 c . 4  of the dynamic grating 
amplitudes on the dimensionless coordinate q and expo- 
nents 0 =S b ,  s 1.0 s b2 s 1, respectively, for the pumping 
-signal ratio (wF(O)/w;(O)) =; 1 .S ( 6 a ,  c) ,  (w;(O)/ 
wq(0)) = e2(6h,d).  

w o  21 - - [ s e c h ( q - ~ ~ ) ) ' ~ " ' ' d ~ ~ ~ { c " s ~ h i q ' - i j ~ ) } '  

X { I - tanh(q' - q0)) 

x [ 52 - w'2 - w'l( 1 - h2)} (99 b)  

( 100) 

The solutions (99 u, b) satisfy the conservation law 
automatically, which may be proved immediately. 
Combining the relationships (79 b), (8 1 a ,  b) and (99 a ,  h)  
we obtain 

wi? + wiz + w';~ + w;, = wy + w; + { sech(q - i l ~ ) ) ~  

and 
J2 = w q 0 )  + wl;(o). 

x ( J ~ - w ( ; - w ; ) ] - J J 2 .  (101) 

The explicit calculation of the integrals (99a ,b )  is 
hardly possible, however we may evaluate the lower and 
upper limits of these expressions using the relationships 
(81 ub) ,  (85) and (86), and assuming without the loss of 
generality that 

Ij)? 3 bl I = - - <  1 .  
PI 

Consider firstly w;~ .  Substituting the relationships (85) and 
(86) into (99u)  and taking into account that 

exp ( 2 ~ 0 )  = w;(O)/w%O), 

'4 b2 
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Stimulated light scattering in SALCs 33 

WIT = - (+)I sech (y - yo) 1 2{ v + I 1 - exp ( - 2q)l 

x w:(0)/2W;(o) 1 I WXO) + blw;(O) 1, 
and ( 102) 

WG =(9){~ech(y-47o)}~{y+[l -exp( - 2 ~ 1 1  

x w~(0)/2w;(0)}w;(0)( [l + W;(o)/W;(o)lb’ 

x (1 - b2) - 11. 

The inequality (102) shows that wfl is finite for all y and 
q + co and w; I + 0 since both the upper limit WA and the 
lower limit W ,  of wf, tend to zero as y --+ w . 

Evaluating wzl by the same method we obtain 

w*; < 4 1  < wz: 3 

W,i = (1/2)(sech(q - y ~ ) } ~ { y  + [exp(2q) - 11 

x w;(0)/2W:(o)} { w;(o)[ 1 - ( 1  + W;(o)/w;(o))hl]  

+ b2w;I(O) 1 
and (103) 

W; = (1/2){sech(y - qo>12wy(0){y + [exp(’h) - 11 
x wp(o)/2w;(o)}. 

The inequality (103) shows that wil  is finite for all y since 

lim W; =w?(o) 
11’- 

and ( 104) 
lim w,i = w;(o){ I - [ I  + w;(o>/w;‘(o)]~I) + b2wI)(0). 

For the analysis of the behaviour of wyl at q + 00 we divide 
the interval of integration in (99 b) into two parts (0, yl)  

and (q l ,  00) where yI  = const is a sufficiently large number 
such that for y > yl, w; and w; are assumed to be constant 
according to the conditions (85) and (86). It is seen from 
the condition (103) that the integral over the first part of 
the interval is a finite number for any fixed ql however 
large it would be, and therefore 

rl-m 

lim [sech (y - 47o)I2 [cosh (q’ - yo)]2 dy‘ 

X [ 1 + tanh (y’  - q 0 ) ] [ 1 2  - w; - w,,(l - b2)] = 0. 

?/+ = { loq’ 
I 

The integral over the second part of the interval increases 
as exp [2(q - qo)]. Then substituting the values of w; and 
wy at q -+ cc into (99 b) we obtain 

f rrl 

lim = lim [sech (y - yo)]’ J dy’[cosh (y’  - ro)l2 
q+= v + =  i ‘I1 

X [ 1 + tanh (y ’ - qo)l[J2 - w;(O) 

x (1 + w~(o)lw;~o))bIl} = W X O )  + W X O )  

X { 1 - (1 + W~(O)/W~(O))*~} < w:(O). (105) 

It is seen from the relationships (85), (86), (94) and 
(102)-(105) that the corrections wyl and wzl are finite, 
small and they satisfy the conservation law (94) for all q. 
The system is stable in respect to the thickness of the 
non-linear medium and to the pumping intensity. 
The numerical estimations show that the values of 
y - (4-8) may be considered as the sufficiently large 
number yl for different b1,2 as it is seen from the 
figures 2 and 3. 

5. The Brillouin-like scattering on SS grating and the 
generation of the additional components 

The Brillouin-like scattered harmonics f s with the 
combination frequencies and wavevectors result from 
the coupling of the fundamental EM waves with the 
dynamic grating induced by them. They are governed 
by the terms in the non-linear polarization (46) which are 
not phase-matched to the fundamental modes (24) and 
(25). These harmonics evolve according to the wave 
equation 

a2 
at2 X - (Dyexp @i). 

The combination frequencies and wavevectors do not 
satisfy the dispersion relations (22) and (23) and therefore 
we would take into account only the inhomogeneous 
particular solution determined by the right-hand side of 
(106) and having the form 

(107) 

These stimulated harmonics are essentially weak in 
comparison with the fundamental modes [15]. The 
analyses of the relationships (13), (24), (25) and (41) 
shows that there are 20 different phases of the harmonics fs including the series of Stokes and anti-Stokes terms 
with the shifted frequencies 

f s = Fs exp i@; + C.C. 

0 s  = 201 - 0 2  = W I  + l-2 
and (108) 

w* = 202 - w ,  = W2 - w 
and the terms with the fundamental frequencies 0 1 . 2  and 
combination wavevectors, unlike the ordinary Brillouin 
scattering [ 11. All phases are presented in appendix B. The 
explicit form of the amplitude F s  is too involved, and we 
do not present them here. However, we may conclude 
using the relationships (47), (70) and (74) that all 
harmonics are spatially localized and their amplitudes 
vanish at infinity: 

z+ w ;  lFsl-+O. 
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where 

It is seen from the equalions ( 109)-( I 1 1 ) that the phases 
in the right-hand sides do not satisfy the corresponding 
homogeneous equations, and therefore the homogeneous 
solutions of (109)-( 1 1 1 )  should be omitted. The inhomo- 
geneous harmonics driven by the non-linear polarization 
have the form 

and 

X exp i(k','r - t o ~ t ) ,  (113) 

X exp i(k;r - w 2 t ) .  ( 1  15) 

It  is seen from the relationships ( 1  12)-( 1 IS) that both 
anisotropy of the linear part of C;k and the non-linearity are 
essential for the existence of the components.fi JI: andjL. 
The reason is that the wavevectors ky." and the optical axis 
OZof SA determine the XZplane coinciding with the main 
cross-section (251, while the unit vector e'i'(32) determines 
the OY axis thus breaking the rotational symmetry of S A  
with respect to the ordinary wave Ey and the extraordinary 
wave ES. On the contrary, the ordinary wave E; is 
polarized in the plane of the smectic layer, and for such a 
wave the OX and OY axcs are degenerate. In  this case the 
longitudinal cornponent.f3; appears due to Ihe non-linearity 
even in the case when a medium is isotropic in  the linear 
approximation [ I ] .  The amplitudes of the additional 
components are proportional to iAy,'I and therefore they 
are spatially localized 

z+ =, ISI1/! l.fl~l, I.f??.l. l.f?:l+(). ( 1  16) 

The exprcssions ( 1  12)-( 1 15) along with the fundamental 
modes (24) and (25) satisfy the condition (48) div D = 0 
as i t  may be shown directly. 

6. The light-induced longitudinal waves 
It is known in S,,  the layer dcformations produce the 

so-called flexoelectric polarization P, [ 11,291, which has 
the form [I 1 1  

where P: are the flexoelectric coupling constants 
Comparing the relationship (41) and ( 1  17) one may see 
that the light-induced SS grating (41 ) gives rice to the high 
frequency travelling wave\ 0 1  polarization ( 1 17) whlch i n  
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Stimulated light scuttering in SALCs 35 

turn would cause the high frequency electric field Ef 
according to the Maxwell equation [25] 

(1 18) 

The magnetic field Hf connected to Pf would be small 

div ( E ~ E ~ L  + qEf,z + 471Pf) = 0. 

and may be neglected: 

Therefore we have 

rot Ef = 0 (119) 

El. is a kind of longitudinal wave [27]. Substituting (41 j 
into (1 17) and solving together (1 18) and (1 19) we obtain 
taking into account (42) 

4 

i[(& + e i ) (Akj l )2  + eq(Akjz)’1 
j =  1 

(1 20) 

The flexoelectric polarization Pcalso gives rise to the space 
charge Qf [ l l ] ,  [25]: 

X exp ( - i A m )  + C.C. (1 20) 

Comparing the expressions (71), (72) and (121) one 
may see that the flexoelectric polarization Pf, the 
longitudinal field Ef and the space charge Qf are spatially 
localized just like the SS harmonics. They are finite at 
z = 0, they have their extreme at z = z(,~ and they vanish at 
infinity: 

( 122) 

The longitudinal field Efcannot penetrate into the linear 
medium z < 0 and represents the superposition of the high 
frequency surface waves at the interface z = 0 periodically 
distributed along Ak, directions. The wavevectors k; of 
the harmonics Eg in the linear medium z < 0 must meet the 
boundary conditions [l], [25]: 

+ 54 9 I&(, IPd, IQfI - IMjI +o. 

k;&, = Ak, , , .  (1 23) 

On the other hand 

For ALL) - Q, - (s/c)w,, 

AkJZ # 0 

and ksz is an imaginary magnitude. The high frequency 
electric field with the artificially created periodicity on the 
interface z = 0 excites SS when applied to SA [21,22]. 
The equations (1 20) and (1 23 j-( 125) show that the inverse 
effect is possible when the light-induced SS wave excites 
the periodical high frequency electric field at the interface 
between SA and a linear medium. 

7. Conclusions 
We consider a stimulated scattering of an arbitrary 

polarized light on a new kind of Kerr non-linearity 
determined by the smectic layer deformations. Unlike the 
EM waves polarized either in the incidence plane or 
normal to it, the EM waves with the three-dimensional 
wavevectors split into the extraordinary and ordinary 
waves due to the birefringence of SA [lo, 251. Conse- 
quently, the SLS in general case appeared to be FWM 
instead of the two-wave mixing discussed earlier [26]. 
The interaction of four EM waves on the Kerr non- 
linearity mentioned above results in the following chain of 
events. Four coupled fundamental waves are interfering 
and create the dynamic grating of the displacement u(r, t ) ,  
The nonlinear part E; of the dielectric constant tensor of 
SA determined by this grating is complex due to the 
viscosity of SA. As a result the coupled fundamental EM 
waves undergo simultaneously the parametric nonrecipro- 
cal energy transfer and the phase cross-modulation. It is 
shown that the pair of EM waves with the lower frequency 
is amplified while the pair of EM waves with the greater 
frequency is attenuated and finally depleted. In the 
resonant case when the frequency difference of the 
coupled EM waves is equal to the SS frequency and the 
S S  dispersion relation is met the parametric amplification 
is essential and the phase cross-modulation is negligible. 
Far from the resonance SA may behave as a focusing or 
defocusing medium depending on the ratio of the 
frequency difference of the EM waves and the resonant SS 
frequency. The analysis shows that the solutions obtained 
are stable at z -+ 0:. The scattering of the fundamental EM 
waves on the field-induced grating results in the excitation 
of the number of secondary EM waves. Unlike ordinary 
Brillouin scattering, in the spectrum not only Stokes and 
anti-Stokes components exist, but there are the harmonics 
with the fundamental frequencies and combination wave- 
vectors, too. The anisotropy and the non-linearity of SA 
give rise to the additional components of the fundamental 
EM waves. It is shown that all excitations are spatially 
localized and stable since the terms describing the spatial 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



36 G. F. Kventsel and B. I.  Lembrikov 

dispersion and the non-linear terms are identical. The 
explicit expressions of the slowly varying amplitudes of 
the fundamental EM waves and of the SS waves are 
obtained for the important particular case when the 
coupling EM waves are mainly polarized in the incidence 
plane or normal to it. The light-induced dynamic grating 
of the layer deformations generates the high frequency 
polarization due to the flexoelectric effect. This polariza- 
tion creates the longitudinal electric field and the space 
charge waves. All these excitations are spatially localized. 
The longitudinal electric field has the frequency and the 
wavcvectors of the dynamic grating which fail to satisfy 
the EM dispersion relation and cannot penetrate into the 
linear medium. At the interface of SA and the linear 
medium longitudinal waves behave like surface waves. 
The numerical estimations show that in the resonant case 
the coupling constant per unit intensity 

B; 
- - (0.01 -10) cm MW - ' 
ip 

which is one-three orders of magnitude greater than the 
gain coefficient at the ordinary stimulated Brillouin 
scattering in isotropic organic liquids [l]. For the 
high pumping intensity W - 100 MW cm - the length 
of the interaction interval belongs to the range 
(2 X 10-'-2)cm, which is in agreement with the exper- 
imental results 1371. 

Appendix A 
The amplitudes lJJ (42) are determined by the wavevec- 

tors, polarizations, frequencies and amplitudes of the 
interacting EM waves and by the material parameters of 
SA. The wavevectors of the dynamic grating have the form 

The constants h, containing the polarization dependence 
have the form 

and 

Q, and r, have the meaning of the frequency and the time 
decay of the SS eigenmode. 

( A  7 )  

where 

An asterisk means the complex conjugation operation. 

Appendix B 
The multiplication of the expressions (24) and (25) by 

the dielectric constant (44) yields 12 terms with the 
following combination frequencies and wavevectors: 

[ (2k - k;)r - (tol + Aclj)t], 

[(2kg - kz)r - (wI + Ato)i], 

[(2k: - k;)r - ( c o l  + Aco)t], 

[(2k7 - k;)r - ( o l  + Ato)t] ,  

+ Ac,,)t], [(k; + k'; - ky)r - 

Four of these terms are doubly degenerate. Besides that 
there are 8 terms with the fundamental frequencies (ol,2 
and with the combination wavevectors: 

[(k; - k; + kyxc)r - C O , ~ ] ,  

[(k; - k; + k';'")r - colt], 

It is easy to see that such terms are specific for thc partly 
degenerate FWM. The four terms with the fundamental 
phases are also doubly degenerate since only two different 
frequencies exist: to1 and (02. The total number of the terms 
is consequently equal to 32. including 24 terms with 
essentially different phase factors: 4 phase matched krms 
and 20 scattered harmonics, as mentioned above. 
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